MATH4050 Real Analysis

Homework 1

10
There are questions in this assignment (your works on the questions with * will be marked). The page number and question number for each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.
(3rd: P.12, Q6)
Let $f: X \rightarrow Y$ be a mapping of a nonempty space X into Y. Show that f is one-to-one if and only if there is a mapping $g: Y \rightarrow X$ such that $g \circ f$ is the identity map on X, that is, such that $g(f(x))=x$ for all $x \in X$.
2. (3rd: P.12, Q7)

Let $f: X \rightarrow Y$ be a mapping of X into Y. Show that f is onto if there is a mapping $g: Y \rightarrow X$ such that $f \circ g$ is the identity map in Y, that is, such that $f(g(y))=y$ for all $y \in Y$.

3. Showthav any ret X canbe "nidexed": \exists a set I and a funchin $f: I \rightarrow X$ mintunt $\{f(i): i \in I\}=X$.

(3rd: P.16, Q14)
Given a set B and a collection of sets \mathcal{C}. Show that

$$
B \cap\left[\bigcup_{A \in \mathcal{C}} A\right]=\bigcup_{A \in \mathcal{C}}(B \cap A)
$$

5. (3rd: P.16, Q15)

Show that if \mathcal{A} and \mathcal{B} are two collection of sets, then
$[\bigcup\{A: A \in \mathcal{A}\}] \cap[\bigcup\{B: B \in \mathcal{B}\}]=\bigcup\{A \cap B:(A, B) \in \mathcal{A} \times \mathcal{B}\}$.
6. (3rd: P.16, Q16)

Let $f: X \rightarrow Y$ be a function and $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of subsets of X.
a. Show that $f\left[\cup A_{\lambda}\right]=\bigcup f\left[A_{\lambda}\right]$.
b. Show that $f\left[\cap A_{\lambda}\right] \subset \cap f\left[A_{\lambda}\right]$.
c. Give an example where $f\left[\cap A_{\lambda}\right] \neq \cap f\left[A_{\lambda}\right]$.

7* (3rd: P.16, Q17)
Let $f: X \rightarrow Y$ be a function and $\left\{B_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of subsets of Y.
a. Show that $f^{-1}\left[\bigcup B_{\lambda}\right]=\bigcup f^{-1}\left[B_{\lambda}\right]$.
b. Show that $f^{-1}\left[\cap B_{\lambda}\right]=\bigcap f^{-1}\left[B_{\lambda}\right]$.
c. Show that $f^{-1}\left[B^{c}\right]=\left(f^{-1}[B]\right)^{c}$ for $B \subset Y$.

8 (3rd: P.16, Q18)
a. Show that if f maps X into Y and $A \subset X, B \subset Y$, then

$$
f\left[f^{-1}[B]\right] \subset B
$$

and

$$
f^{-1}[f[A]] \supset A .
$$

b. Give examples to show that we need not have equality in each cig the chiplayed
c. Show that if f maps X onto Y and $B \subset Y$, then two lines.

$$
f\left[f^{-1}[B]\right]=B
$$

*. Show that $f \mapsto \int_{0}^{1} f(x) d x$ is a "monotone" function on $R[0,1]$ (consisting of all Riemann integrable functions on $[0,1])$, and $R[0,1]$ is a linear space. Show further that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x
$$

if $f, f_{n} \in R[0,1]$ such that

10: Let $f:[a, b] \rightarrow \mathbb{R}$; and $x_{0} \in[a, b]$. Show that f is cts (continuous) at x_{0} if

$$
\begin{aligned}
f\left(x_{0}\right) & =\inf _{\delta>0} \sup \left\{f(x): x \in[a, b] \cap V_{\delta}\left(x_{0}\right)\right\} \\
& =\sup _{\delta>0} \inf \left\{f(x): x \in[a, b] \cap V_{\delta}\left(x_{0}\right)\right\} .
\end{aligned}
$$

(the last two lines are sometimes denoted by

$$
\begin{aligned}
& \left.\tilde{f}\left(x_{0}\right)=\inf _{\delta>0} f^{\delta}\left(x_{0}\right) \text { and } \underline{f}\left(x_{0}\right)=\operatorname{sinp}_{\delta>0} f_{\delta}\left(x_{0}\right) \text { respectively } \delta\right) \text {, where } \\
& V_{\delta}\left(x_{0}\right):=\left\{x \in \mathbb{R}:\left|x-x_{0}\right|<\delta\right\}=\left(x_{0}-\delta, x_{0}+\delta\right) .
\end{aligned}
$$

